Nama/kelas :usrotul hasanah/xtkj
Guru :slamet hariadi
Pertemuan :rabu 20 agustus 2014
Abstrak :saya telah mempelajari tentang system bilangan biner
Sistem Bilangan (Desimal,Biner,Okta,dan Heksadesimal)
Pada
dasarnya pengolahan teknologi digital tuh menggunakan bilagan biner.Tapi untuk
memenuhi pengolahan data yg lebih efektif dan efisien maka dibuat sistem
bilangan oktal dan hexa…
Biner adalah bilangan yang hanya terdiri dari 2 bilangan,
yaitu 0 dan 1…
Oktal adalah bilangan yang terdiri dari 8 bilangan, yaitu
0,1,2,3,4,5,6,7…
Hexa adalah bilangan yang terdiri dari 16 bilangan, yaitu
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F…
Permasalahan yang sering timbul adalah bagaimana caranya
mengkonversi dari satu ke yang lainnya… Berikut juga operasi2 yang dapat
dilakukan kepadanya :
Contoh :
Biner: 01 kalo dalam desimal tuh maksudnya 0*21 +
1*20 = 1.
Oktal juga sama cuma tinggal ganti 2 ma angka 8, begitpun hexa
cuma tinggal ganti 2 a angka 16…
Masalahnya gmana cara cepatnya kalo mau konversi dari bilangan
biner ke oktal atau hexa…
Prinsionya adalah dengan memanfaatkan karakteristik bilangan
itu sendiri
Bilangan biner merupakan bilangan dengan perpangkatan max 21
, sedangkan oktal adalah bilangan dengan perpangkatan max 23 , dan
hexa adalah bilangan dengan perpangkatan max 24 .
Maksudnya adalah 3 bilangan di depan/belakang koma pada biner
merupakan satu bilangan di depan/belakang koma pada oktal. Begitu juga kalo mau
hexa, 4 bilangan di depan/belakang koma pada biner merupakan satu bilangan di
depan/belakang pada hexa.
Contohnya…
Biner: 10111,1100
Oktal:
Liat 3 bilangan depan koma: 111 dan 010 (kalo paling depan dah
gak ada angka tambahin aja dengan 0)
Liat 3 bilangan belakang koma: 110 dan 000 (kalo paling depan
dah tidak ada angka tambahkan dengan 0)
Konversi:111=1*22 +1*21 +1*20
=7; 010=0*22 +1*21 +0*20 =2;110=1*22
+1*21 +0*20 =6;000=0*22 +0*21 +0*20
=0.
Jadi dalam oktal 10111,1100=27,60…
Begitu juga dengan hexa
A. Konversi Antar Basis Bilangan
Sudah dikenal, dalam bahasa komputer terdapat empat basis
bilangan. Keempat bilangan itu adalah biner, oktal, desimal dan hexadesimal.
Keempat bilangan itu saling berkaitan satu sama lain. Rumus atau cara
mencarinya cukup mudah untuk dipelajari. Konversi dari desimal ke
non-desimal, hanya mencari sisa pembagiannya saja. Dan konversi dari
non-desimal ke desimal
adalah: 1. Mengalikan bilangan dengan angka basis bilangannya. 2. Setiap angka
yang bernilai satuan, dihitung dengan pangkat NOL (0). Digit puluhan, dengan
pangkat SATU (1), begitu pula dengan digit ratusan, ribuan, dan seterusnya.
Nilai pangkat selalu bertambah satu point.
1. Konversi Biner ke Oktal
Metode konversinya hampir sama. Cuma, karena pengelompokkannya
berdasarkan 3 bit saja, maka hasilnya adalah: 1010 (2) = …… (8)
Solusi: Ambil tiga digit terbelakang dahulu. 010(2) = 2(8)
Sedangkan sisa satu digit terakhir, tetap bernilai 1. Hasil akhirnya
adalah: 12.
2. Konversi Biner ke Hexadesimal
Metode konversinya hampir sama dengan Biner ke Oktal. Namun
pengelompokkannya sejumlah 4 bit. Empat kelompok bit paling kanan adalah posisi
satuan, empat bit kedua dari kanan adalah puluhan, dan seterusnya. Contoh:
11100011(2) = …… (16) Solusi: kelompok bit paling kanan:
0011 = 3 kelompok bit berikutnya: 1110 = E Hasil konversinya adalah: E3(16)
3. Konversi Biner ke Desimal
Cara atau metode ini sedikit berbeda. Contoh: 10110(2) = ……(10) diuraikan menjadi: (1×24)+(0×23)+(1×22)+(1×21)+(0×20) = 16 + 0 + 4 + 2 + 0 = 22 Angka 2 dalam perkalian adalah basis biner-nya. Sedangkan pangkat yang berurut, menandakan angkat 0 adalah satuan, pangkat 1 adalah puluhan, dan seterusnya.
4. Konversi Oktal ke Biner
Sebenarnya, untuk konversi basis ini, haruslah sedikit
menghafal tabel konversi utama yang berada di halaman atas. Namun dapat
dipelajari dengan mudah. Dan ambillah tiga biner saja. Contoh: 523(8)
= …… (2) Solusi: Dengan melihat tabel utama, didapat hasilnya
adalah: 3 = 011 2 = 010 5 = 101 Pengurutan bilangan masih berdasarkan posisi
satuan, puluhan dan ratusan. Hasil: 101010011(2)
5. Konversi Hexadesimal ke Biner
Metode dan caranya hampir serupa dengan konversi Oktal ke
Biner. Hanya pengelompokkannya sebanyak empat bit. Seperti pada tabel utama.
Contoh: 2A(16) = ……(2) Solusi: A = 1010, 2 = 0010 Hasil: 101010(2).
Dengan catatan, angka “0″ paling depan tidak usah ditulis.
6. Konversi Desimal ke Hexadesimal
Ada cara dan metodenya, namun bagi sebagian orang masih
terbilang membingungkan. Cara termudah adalah, konversikan dahulu dari desimal ke biner, lalu
konversikan dari biner
ke hexadesimal.
Contoh: 75(10) = ……(16) Solusi: 75 dibagi 16 = 4
sisa 11 (11 = B). Dan hasil konversinya: 4B(16)
7. Konversi Hexadesimal ke Desimal
Caranya hampir sama seperti konversi dari biner ke desimal.
Namun, bilangan basisnya adalah 16. Contoh: 4B(16) = ……(10)
Solusi: Dengan patokan pada tabel utama, B dapat ditulis dengan nilai “11“.
(4×161)+(11×160) = 64 + 11 = 75(10)
8. Konversi Desimal ke Oktal
Caranya hampir sama dengan konversi desimal ke hexadesimal.
Contoh: 25(10) = ……(8) Solusi: 25 dibagi 8 = 3
sisa 1. Hasilnya dapat ditulis: 31(8)
25 : 8 sisa 1 3 ——– 3 hasilnya adalah 31
9. Konversi Oktal ke Desimal
Metodenya hampir sama dengan konversi hexadesimal ke desimal.
Dapat diikuti dengan contoh di bawah ini: 31(8) = ……(10)
Solusi: (3×81)+(1×80) = 24 + 1 = 25(10)